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Abstract—Model-based1,2 design and automated code 
generation are being used increasingly at NASA.  Many 
NASA projects now use MathWorks Simulink and Real-
Time Workshop for at least some of their modeling and 
code development. The trend is to move beyond simulation 
and prototyping to actual flight code, particularly in the 
Guidance, Navigation, and Control domain. However, there 
are substantial obstacles to more widespread adoption of 
code generators in such safety-critical domains. Since code 
generators are typically not qualified, there is no guarantee 
that their output is correct, and consequently the generated 
code still needs to be fully tested and certified. Moreover, 
the regeneration of code can require complete 
recertification, which offsets many of the advantages of 
using a generator. Indeed, manual review of autocode can be 
more challenging than for hand-written code. Since the 
direct V&V of code generators is too laborious and 
complicated due to their complex (and often proprietary) 
nature, we have developed a generator plug-in to support the 
subsequent certification of the code that is generated. 
Specifically, the AutoCert tool supports certification by 
formally verifying that the generated code is free of 
different safety violations, by constructing an independently 
verifiable certificate, and by explaining its analysis in a 
textual form suitable for code reviews.  This enables 
missions to obtain assurance about the safety and reliability 
of the code without excessive manual V&V effort and, as a 
consequence, increases the acceptance of code generators in 
safety-critical contexts. The generation of explicit 
certificates and textual reports is particularly well-suited to 
supporting independent V&V. The key technical idea of our 
approach is to exploit the idiomatic nature of auto-generated 
code in order to automatically infer logical annotations. 
These allow the automatic formal verification of the safety 
properties without requiring access to the internals of the 
code generator. The approach is independent of the 
particular generator used but is currently being adapted to 
code generated using MathWorks Real-Time Workshop, an 
automatic code generator that translates from 
Simulink/Stateflow models into embedded C code. 
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1. BACKGROUND 

We begin in this section with some necessary background 
on automated code generation and different approaches 
which can be taken to V&V. We then give the background 
to our certification approach. In Section 2, we describe our 
case study with the Vertical Motion Simulator. Next, 
Section 3 gives the design of the AutoCert plug-in, 
concentrating on the integration with the Matlab 
environment. Finally, Section 4 summarizes the tool 
capabilities and describes our plans for future development. 

Automated Code Generation 

Model-based design and automated code generation (or 
autocoding) are being used increasingly at NASA. They 
promise many benefits, including higher productivity, 
reduced turn-around times, increased portability, and 
elimination of manual coding errors. There are now 
numerous successful applications of both in-house custom 
generators for specific projects, and generic commercial 
generators. One of the most popular code generators within 
NASA is the MathWorks Real-Time Workshop [8] (with 
the add-on product Embedded Coder), an automatic code 
generator that translates Simulink/Stateflow models into 
embeddable (and embedded) C code. By some estimates, 
50% of all NASA projects now use Simulink and Real-Time 
Workshop for at least some of their code development. 
Code generators have traditionally been used for rapid 
prototyping and design exploration, or the generation of 
certain kinds of code (user interfaces, stubs, header files 
etc.), but there is a clear trend now to move beyond 
simulation and prototyping to the generation of production 
flight code, particularly in the Guidance, Navigation, and 
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Control domain. Indeed, the prime contractor for the Orion 
Spacecraft (NASA’s Crew Exploration Vehicle) is making 
extensive use of code generators for the development of the 
flight software.  

Nevertheless, there remain substantial obstacles to more 
widespread adoption of code generators in such safety-
critical domains, principally, how the generated code should 
be assured. Ideally, the code generator, itself, should be 
qualified. However, this is a non-trivial and expensive 
process, and is therefore rarely done. Moreover, the 
qualification is only specific to the use of the generator 
within a given project, and needs to be redone for every 
project and for every version of the tool. Also, even if a 
code generator is generally trusted, user-specific 
modifications and configurations necessitate that V&V be 
carried out on the generated code [6]. Since code generators 
are typically not qualified, there is no guarantee that their 
output is correct, and consequently the generated code still 
needs to be fully tested and certified. 

There are generally two workarounds for dealing with code 
generator bugs. Sometimes there is a model workaround - 
i.e., modify the model. This will likely not always be an 
option. Moreover, some bugs can not be easily characterized 
at the model level - that is, it is difficult to say which 
combinations of model elements give rise to these bugs, let 
alone how to fix the models. 

The second option is simply to upgrade to a newer version 
of the generator. However, any qualification effort which 
has been carried out on the previous working version is now 
lost, the code must be recertified, and the entire toolchain 
must now essentially be upgraded. This can offset many of 
the advantages of using a generator. 

Moreover, advocates of the model-driven development 
paradigm claim that by only needing to maintain models, 
and not code, the overall complexity of software 
development is reduced.  While it is undoubtedly true that 
some of burden of verification can be raised from code to 
model, it should be acknowledged that, in fact, there are 
additional concerns and, indeed, more artifacts in a model-
based development process.  Users need to be sure that the 
code implements the model, that the code generator is 
correctly used and configured, that the target adaptations are 
correct, that the generated code meets high-level safety 
requirements, that it is integrated with legacy code, and so 
on.  There can also be concerns with the understandability 
of the generated code. Some understanding of why the code 
is safe, therefore, helps the larger certification process. 
Automated support for V&V that is integrated with the 
generator can address some of these complexity concerns. 

Furthermore, certification requires more than black box 
verification of selected properties, otherwise trust in one tool 
(the generator) is simply replaced with trust in another (the 
verifier). Finally, the direct V&V of code generators is too 
laborious and complicated due to their complex (and often 

proprietary) nature, while testing the generator itself can 
require detailed knowledge of the transformations it applies 
[10, 11]. 

Automated code generation, therefore, presents a number of 
challenges to software processes and, in particular, to V&V, 
and this leads to risk. The AutoCert tool we describe here 
mitigates some of that risk. 

 

Automated Code Certification 

In contrast to approaches based on directly qualifying the 
generator, itself, or on testing of the generated code, we 
instead propose a generator plug-in to support the 
subsequent certification of the code created by the generator. 
Specifically, our tool supports certification by formally 
verifying that the generated code is free of a range of safety 
violations, by constructing an independently verifiable 
certificate, and by explaining its analysis in a textual form 
suitable for code reviews. This enables missions to obtain 
assurance about the safety and reliability of the code without 
excessive manual V&V effort and, as a con-sequence, 
increase the acceptance of code generators in safety-critical 
contexts. The generation of explicit certificates is 
particularly well-suited to supporting independent V&V.  

The tool belongs to the category of techniques known as 
formal methods, which refers to techniques that 
exhaustively search for errors, in contrast to approaches 
based on simulation and testing. The particular approach 
described here can be seen as carrying out a symbolic 
execution of the generated source code in order to prove 
properties about the code, rather than the model. 

We follow the tradition in formal methods of referring to 
techniques which conclusively demonstrate the absence of 
bugs (rather than simply search for existing bugs) as 
performing certification. However, in an IV&V context, we 
must consider the larger picture of certification, of which 
formal verification is a part, and therefore produce assurance 
evidence which can be checked either by machines (during 
proof checking) or by humans (during code reviews). 

The key technical idea of our approach is to exploit the 
idiomatic nature of auto-generated code in order to 
automatically infer logical annotations. Annotations are 
crucial in order to allow the automatic formal verification of 
the safety properties without requiring access to the 
internals of the code generator, as well as making a precise 
analysis possible. The approach is independent of the 
particular generator used, and need only be customized by 
the appropriate set of patterns. 

Now, considering the case where no bugs are detected, it is 
guaranteed that the auto-generated source code is free of 
violations, and we can compare the time taken to review and 
certify the auto-generated code by hand, with the time taken 
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to do it with support from AutoCert. This support consists 
of automatically checking that the code complies with the 
specified safety properties, generating an explanation for 
why it complies, and tracing this explanation to code, 
model, and verification artifacts. 

Real-Time Workshop has extensive tracing capabilities. 
However, optimization can obscure connections between 
model blocks and corresponding code fragments, by 
merging and compressing functionally separate fragments. 
As part of its analysis, AutoCert “reverse engineers” the 
code, sifting through potentially overlapping fragments to 
create links from the code to high-level functional 
descriptions (in an auto-generated safety document). 

Rather than use a separate third-party analysis tool, we are 
designing a plug-in that is tightly coupled to the Real-Time 
Workshop code generator. We adopt the title, 
AutoCert/RTW (AutoCert for short), for this safety 
certification plug-in. Following the plug-in philosophy, the 
tool acts as an extension of RTW, and is therefore closely 
integrated from the user’s perspective, but the 
implementation does not require a deep integration with the 
internal operations of RTW.  

The following sections describe the components of our 
system: the style of safety properties which we check, the 
inference of annotations, the creation and discharge of 
verification conditions, the generation of safety documents, 
and the overall system architecture. 

 
Safety Properties—AutoCert supports certification by 
formally verifying that the generated code is free of 
violations of specific safety properties. In our approach, we 
distinguish between various kinds of safety properties. 
Language-specific properties concern those safety aspects of 
the code which only depend upon the semantics of the 
programming language. Examples include memory safety 
(e.g., absence of array bounds violations), variable 
initialization, and scoping requirements. Domain-specific 
properties relate to details which are specific to the use of a 
given code generator in a particular domain. For example, 
all values of x for an interpolation table (x,y) must be 
disjoint and in increasing order. Finally, project-specific and 
application-specific properties talk about guarantees for a 
family of applications or a single application, respectively. 
For example, flight-rules can be considered to comprise 
typical project-specific properties. 

A range of safety properties, including initialization safety, 
and absence of out-of-bounds array accesses, have already 
been formalized and can be used with our algorithm. 
Initialization safety ensures that each variable or individual 
array element has been explicitly assigned a value before it 
is used. Array-bounds safety requires each access to an 
array element to be within the specified upper and lower 
bounds of the array, and is a typical example of a language-
specific property. Matrix symmetry requires certain two-

dimensional arrays to be symmetric. Sensor input usage is a 
GN&C specific property which is a variation of the general 
init-property guaranteeing that each sensor reading passed 
as an input to a state estimation algorithm is actually used 
during the computation of the output estimate. Frame safety 
checks that each variable is in the correct coordinate frame, 
and that coordinate transformation are correctly applied. 
Another example, from the data analysis domain, ensures 
that certain one-dimensional arrays represent normalized 
vectors, i.e., that their contents add up to one. Details of 
how safety properties are formalized in our approach are 
omitted here. 

Hoare-Style Safety Certification—Our certification approach 
uses the well-known Hoare-style framework to prove the 
safety properties. This is based on proof rules that derive 
triples of the form P {C} Q, meaning “if pre-condition P 
holds before execution of statement C, then Q holds after”. 
For each safety property and each statement a corresponding 
rule is given. A verification condition generator (VCG) then 
applies the rules to a program, which produces a number of 
logical statements or proof obligations. Unfortunately, the 
Hoare-style framework requires a large amount of logical 
annotations attached to statements of the code, which 
describe pre- and post-conditions and loop invariants. This 
has so far limited its practical applicability. However, it is 
important to observe that correctness of the proofs does not 
depend on correctness of the (untrusted) annotations; rather, 
they can be seen as hints which guide the proof process. 
This allows us to automatically infer the annotations without 
compromising the safety guarantees provided by the 
certification tool. 

For each notion of safety the appropriate safety property and 
corresponding policy must be formulated. This is usually 
straightforward; in particular, the safety policy can be 
constructed systematically by instantiating a generic rule set 
that is derived from the standard rules of the Hoare calculus 
[1]. The basic idea is to extend the standard environment of 
program variables with a “shadow” environment of safety 
variables which record safety information related to the 
corresponding program variables. The rules are then 
responsible for maintaining this environment and producing 
the appropriate verification conditions (VCs). Safety 
certification then starts with the outermost (i.e., at the end of 
the program) postcondition true and computes the weakest 
safety precondition (WSPC), i.e., the WPC together with all 
applied safety conditions and safety substitutions. If the 
program is safe then its WSPC will be provable without any 
assumptions. 

Annotation Inference—For arbitrary (i.e., manually written) 
code it is impossible to automatically generate the required 
annotations and most annotations must be provided by the 
user—a prohibitively tedious and costly task. However, a 
code generator like RTW produces highly structured and 
idiomatic code. Consequently, only a few, standardized 
annotations need be used. Intuitively, idiomatic code 
exhibits some regular structure beyond the syntax of the 
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programming language and uses similar constructions for 
similar problems. Even manually written code already tends 
to be idiomatic, but the idioms used vary with the 
programmer, and are much less regular. Automated 
generators eliminate this variability because they derive 
code by combining a finite number of building blocks. 

The idioms determine the interface between the code 
generator and the inference algorithm. For each generator 
and safety property, our approach thus requires a 
customization step in which the relevant idioms are 
identified and formalized as patterns. Note that neither 
missed idioms nor wrong patterns can compromise the 
assurance given by the safety proofs because the inferred 
annotations remain untrusted. They can, however, 
compromise the “completeness” of the approach in the 
sense that safe programs can fail to be proven safe, and in 
our experience, a few iterations can be required to identify 
all patterns. Note also that the idioms can be recognized 
from a given code base alone, even without knowing the 
templates that produced the code. This gives us two 
additional benefits. First, it allows us to apply our technique 
to black-box generators. Second, it also allows us to handle 
optimizations: as long as the resulting code can still be 
characterized by patterns, neither the specific optimizations 
nor their order matter. 

We have developed a generic pattern language to describe 
these code idioms. The patterns let us define annotation 
schemas to encapsulate certification cases for matching code 
fragments. We omit details of the schema language here. An 
annotation schema compiler takes a collection of annotation 
schemas tailored towards a specific code generator and 
safety property, and compiles it down into a customized 
annotation inference algorithm. The annotation schemas are 
then applied using a combination of planning and aspect-
oriented techniques to produce an annotated program, which 
can then be certified in the Hoare-style framework. We can 

thus check conformance of generated code with a range of 
safety properties fully automatically. As an example, 
consider a matrix that is initialized using a nested loop. In 
order to verify that the code completely initializes the 
matrix, we need at least four annotations: inner and outer 
loop invariants, which formalize “snapshots” of the matrix 
initialized “up to that point”, and inner and outer post-
conditions, which formalize successful initialization of all or 
part of the matrix. Different annotations are required for 
row-major and column-major memory layouts. Additional 
complications arise when information from the initialization 
block needs to be propagated to parts of the code where it is 
needed, taking into account scope, control flow, and context. 
However, although the resulting annotations can become 
quite complex, several underlying principles can be used to 
generate them automatically. The only input which is 
needed is the basic pattern of two-dimensional iteration 
(which captures both memory layouts), and a definition of 
the initialization safety property. We have a library of 
schemas which allows us to certify code generated by RTW 
from a range of models, as well as by in-house code 
generators. We have used the tool to analyze code produced 
from GN&C models consisting of both Simulink and 
Embedded Matlab, from several projects, including the 
Vertical Motion Simulator described here (Section 2). 

VC Processing—A Verification Condition Generator (VCG) 
traverses the annotated code and applies the rules of the 
calculus to produce Verification Conditions (VCs). These 
are logical formulas which need to be shown to ensure 
compliance with the safety property. The VCG simply 
implements the semantics of the programming language and 
the proof rules of the safety policies. The VCs are then 
simplified, completed by an axiomatization of a background 
theory and given as proof obligations to an off-the-shelf 
high-performance automated theorem prover (ATP). If all 
obligations are proven it is guaranteed that the safety 
property is obeyed and the resulting proofs comprise the 

 
Figure 1 – System Architecture 
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evidence for that. The VCG can be seen, therefore, as 
performing a compositional verification of the property.  

We use automated theorem proving to check the VCs. In 
contrast to forms of theorem proving which are interactive 
(mainly tactic-based higher-order provers), we use 
customized domain theories of logical axioms, and scripts, 
so that the prover is essentially used as a decision procedure, 
and its use is completely hidden from the user. We use the 
TPTP syntax [12] which lets us use a wide range of the off-
the-shelf first-order provers. 

System Architecture—Figure 1 shows the overall system 
architecture of our certification approach. At its core is the 
original (unmodified) code generator (in this case, Real-
Time Workshop) which is complemented by the annotation 
inference subsystem, including the pattern library and the 
annotation schemas, as well as the standard machinery for 
Hoare-style techniques, i.e., VCG, simplifier, ATP, domain 
theory, and proof checker. The analysis proceeds by first 
translating the parsed C code into a simplified intermediate 
language. The logical inference is carried out on this 
language. The inference engine also supplies information to 
the safety document generator, which renders this along 
with the code. The architecture distinguishes between 
trusted and untrusted components, shown in Figure 1 in red 
(dark grey) and blue (light grey), respectively. Trusted 

components must be correct because any errors in them can 
compromise the assurance provided by the overall system. 
Untrusted components, on the other hand, are not crucial to 
the assurance because their results are double-checked by at 
least one trusted component. In particular, the assurance 
provided by our approach does not depend on the 
correctness of the two largest (and most complicated) 
external components: the original code generator, and the 
ATP; instead, we need only trust the safety policy, the 
VCG, the domain theory, and the proof checker. Moreover, 
the annotation inference subsystem (including the pattern 
library and annotation schemas) also remains untrusted 
since the resulting annotations simply serve as “hints” for 
the subsequent analysis steps. Any error in an annotation 
would lead to an unprovable VC and hence be caught by the 
ATP. We will omit further technical details. These 
components and their interactions are described in more 
detail in publications [1, 3, 4, 5]. 

Safety Documentation—Rather than act as a black-box 
verification tool which provides a simple pass/fail result, 
AutoCert provides a detailed safety documentation report. 
The report is generated from the analysis of the code and 
provides a high-level traceable explanation of why the code 
complies with the specified safety property. The report is 
intended to help users in understanding the generated code 
(often a particular concern for automatically generated code, 
and to support the manual process of code review. Also, by 
explaining the reasoning behind the certification process, 
there is less of a need to trust the tool. The report can draw 
attention to potential certification problems.  

If we suppose that a diligent code reviewer must 
“rediscover” all the information which is automatically 
generating by AutoCert, in order to construct a watertight 
justification of safety, even for a small program this can 
result in substantial savings in effort. 

Figure 2 shows an excerpt of some documentation for the 
certification report for the code generated from a small 
Embedded Matlab model defining the measurement update 
of a simple Kalman filter. The safety requirement, in this 
excerpt, concerns establishing that the variable rtb_PP has 
been initialized appropriately before its use. 

The report first lists all the “relevant” variables. Intuitively, 
they are the variables to which reviewers are likely to need 
to direct their attention; technically, these are variables for 
which the logical proof of safety passed a certain threshold 
of complexity. This and other features could be further 
customized using style templates. 

Then, for each variable in turn, the report explains why the 
variable meets the requirement. The explanation can contain 
explanations of fragments of code, which can lead to 
explanations for other variables (which are cross-linked). 
Whenever the tool carries out some analysis using the 
prover (e.g., that a code fragment establishes some 

Initialization safety for rtb_PP 
rtb_PP has 4 relevant occurrences. 

Occurrence at line 170 
Initialization safety for this occurrence requires that 
rtb_PP is initialized at position 0, or formally that  
rtb_PP_init(0) == init 

holds. This location gives rise to a single verification 
condition:  

• k2_init_0100  

The initialization safety is established at a single 
location, lines 161 to 166, by a double nested 
linearized for-loop. This location gives rise to two 
verification conditions:  

• k2_init_0098  
• k2_init_0099  

It relies, in turn, on the initialization of the following 
variables:  

• eml_dv4  
• eml_dv5  

The occurrence of rtb_PP is connected to this 
location by a single path. 
 

Figure 2 – Excerpt of Safety Document 
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property), it provides links to the corresponding verification 
conditions. 

2. CASE STUDY: VERTICAL MOTION SIMULATOR 

We have applied AutoCert to analyze code which has been 
autogenerated using RTW, from Simulink models provided 
by the Vertical Motion Simulator (VMS) facility at NASA 
Ames. 

Overview of the VMS 

The Vertical Motion Simulator (VMS) is a world-class 
research and development facility located in the Aviation 
Systems Division at NASA Ames Research Center that 
offers unparalleled capabilities for conducting experiments 
involving aeronautics and aerospace disciplines. The six-
degree-of-freedom VMS, with its 60-foot vertical and 40-
foot lateral motion capability, is the world’s largest motion-
base simulator. The large amplitude motion system of the 
VMS was designed to aid in the study of helicopter and 
vertical/short take-off landing (V/STOL) issues specifically 
relating to research in controls, guidance, displays, 
automation, and handling qualities of existing or proposed 
aircraft. It is also an excellent tool for investigating issues 
relevant to nap-of-the-earth flight, and landing and rollout 
studies. 

Since the VMS is effectively a piloted vehicle, the system 
must be human rated. Specifically, the VMS satisfies NPR 
8705.2A, “Human Rating Requirements for Space 
Systems”.  

Mode Control Unit 

The VMS has four hydraulic axes. Three rotational axes 
control roll, pitch, and yaw, respectively, and a linear axis 
that controls longitudinal movements. The VMS developers 
provided a Simulink block diagram of a single hydraulic 
rotational servo axis controller for use with our analysis 
tool. Although the Simulink block diagram provided had not 
yet been implemented into the VMS system at this point, 
plans are underway to replace the old analog electronics that 
now deliver this functionality. This model was originally 
built with MATRIXx System Build block diagrams. 
Preliminary testing was conducted with this model 
controlling the simulator motion. Later, the model was 
manually converted from MATRIXx to Simulink and it is 
this Simulink model that is being integrated into the VMS.  

The hydraulic axis model will be executed on a VME 
platform with a Motorola single board computer. VxWorks 
will be used as the real-time operating system. Real-Time 
Workshop will be used to generate C code from the 
Simulink model. Analog and discrete, input and outputs are 
provided by third party vendor VME boards. The model 
implements a servo loop controller with a servo current 
loop, a velocity loop and a position loop. The model accepts 

position and velocity feed forward signals over a fiber optic 
digital network and provides current drive to the hydraulic 
actuator. Another controller in the VMS is the Mode 
Control Unit (MCU) which provides the interface between 
the host aeronautic computer and the motion control 
electronics and provides manual control for the motion 
safety operator. This unit, once implemented with analog 
electronics was replaced by a digital controller built up on 
VME using MATRIXx and its components, System Build, 
AutoCode and RealSim. Plans are in place to convert this 
system to Simulink by manually converting the model and 
then using Real-Time Workshop to produce C code that will 
run under VxWorks. 

IV&V 

Since the VMS project is moving to the use of a new 
autocoder, namely Real-Time Workshop, the engineers are 
interested in tools which can ease the transition from the 
previous MATRIXx models. The VMS team supplied us 
with their Simulink model for the MCU, and described the 
settings they typically use for generating code using RTW. 
After confirming that we were able to generate the same C 
code as the VMS team, for an initial experiment we 
analyzed the code for the initialization safety property using 
a range of analysis settings.  

On most settings, the code could be verified with all VCs 
immediately discharged (i.e., proven) by the internal 
simplifier (Figure 1). This takes under one minute. At the 
other extreme, performing no simplification at all produced 
over 700 VCs, which could then be proven using the 
theorem prover. Some experimentation was required to 
determine the settings which provided the most insightful 
output.  

V&V activities for the conversions to digital controllers are 
done in the VMS at the system level. This is a time 
consuming process but is critical to get safety certification 
for human occupancy. For the conversion of the MCU from 
MATRIXx to Simulink, the VMS team is replacing only the 
software on the device and the same hardware platform will 
be used. Although the VMS developers have been mainly 
concerned with functional tests, AutoCert can obviate the 
need to construct a huge test-suite to ensure that no low-
level errors exist, and therefore helps engineers concentrate 
on higher-level properties. 

3. INTEGRATION WITH MATLAB ENVIRONMENT 

In this section we describe the integration of AutoCert with 
the Matlab environment, in general, and Real-Time 
Workshop, in particular. There are several ways in which 
this could be done: via the Matlab command line, using the 
RTW configuration capabilities, and through the Simulink 
graphical environment. We first describe the Matlab 
environment, and then present a number of use cases for the 
functionality which we support. Then we describe the 
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implementation approach which we have adopted, which 
centers on generating JavaScript from the certification 
artifacts, and weaving this with RTW-generated files, in 
order to produce browsable verification artifacts. We also 
discuss some alternative implementation strategies. 

Matlab Environment 

Simulink is the MathWorks environment for creating 
graphical models of dynamic systems (Figure 3). Real-Time 
Workshop is not a standalone tool, but rather a set of menu 
options within Simulink, which allow executable C and C++ 
code to be generated from a model. A further add-on 
product, Embedded Coder has various additional features 
which are useful for generating C code tuned for embedded 
devices. RTW provides browsing capabilities for its 
generated code by generating parallel HTML files, which 
can be viewed with the Matlab Web Browser. That is, for 
every .c and .h file it generates a parallel c.html and h.html 
file. The parallel HTML files created by RTW contain 
internal hyperlinks to type declarations and external 
hyperlinks back to corresponding Simulink model elements. 
The Matlab Browser supports a protocol which allows 
Matlab commands to be invoked from hyperlinks within 
HTML documents. Thus, clicking on a hyperlink to a model 
element in the parallel HTML file (within the Matlab 
Browser) causes the corresponding box in the Simulink 
model to be highlighted. Like any web browser, the Matlab 
Browser might not support all of the HTML or related 
features used in a particular web site or HTML page. 

We integrate AutoCert with RTW as follows. We 
interweave the RTW HTML pages with the annotations 
obtained from the annotation inference over the parallel C 

code generated by RTW. This gives the annotated RTW 
HTML page the ability to link to the model. By invoking 
Matlab commands inside the Matlab Browser, AutoCert is 
able to use Matlab command line calls in order to invoke 
system calls which can, in turn, again execute the inference 
engine. 

Certification Functionality 

We describe the integration of AutoCert with RTW from the 
point of view of the user via a series of use cases or 
scenarios. The integrated tool provides functionality in three 
main areas: code creation, certificate and safety document 
creation, and tracing between the various artifacts. 

Code Creation—The user has two ways of generating code 
from their model using RTW. The first is the standard way 
by using the RTW menu options inside Simulink. Inside the 
menu options, located under Simulation → Configuration 
Parameters → Real-Time Workshop, there is a “Generate 
code” button which creates the code. There are numerous 
other parameters that the user can use to tune model and 
target configurations. One of the parameters needed for 
AutoCert purposes is the option to generate parallel HTML 
files; this parameter is highlighted in Figure 3. 

The second way to generate the code is to directly use the 
AutoCert menu option, added as a Simulink menu option at 
Simulation → Certify Code. The “RTW build code” check 
box option in this menu uses the default settings, which are 
set inside the RTW Configuration Parameters. When this 
option is checked off, the code is created, along with the 
RTW HTML files. The check box option provides two 
benefits to the user. First, the user can autogenerate code, 

 
Figure 3 – Integrated Certification Menu
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create RTW HTML files, and call AutoCert all in one menu. 
Second, the user has the option to autogenerate code before 
or during the use of the AutoCert menu, i.e., the user is not 
required to always have code and HTML files pre-
generated, allowing some flexibility. The remaining 
parameters in the AutoCert menu relate to certificate 
creation, described next.  

Certificate Creation—It is assumed that the user has either 
already generated code from their model using RTW, or that 
otherwise the “RTW build code” option is selected in the 
AutoCert menu. Inside the menu, there are two parameters: 
select policy and select stage. In order to invoke the 
inference engine, the user has to select a safety policy from 
a predetermined list of choices - this choice determines 
which property of the code is to be certified. AutoCert will 
then certify the code via a number of stages. The user can 
also specify that a specific variable (“hotvar”) be analyzed 
with respect to the safety property (the default case), or that 
all variables be checked. Next the user selects a specific 
certification “stage”. The possible stages are to generate 
annotations, VCs, or certificates. There is also an option to 
generate a safety document.  

When “Go” is selected in the AutoCert Certify Code menu, 
the inference engine is executed (via the Matlab command 
line) with the options chosen by the user. The RTW 
generated code and HTML files are passed in as input. The 
tool then outputs AutoCert HTML pages based on the stage 
chosen. After finishing outputting the HTML files, the 
AutoCert menu then opens the Matlab Browser using the 
Matlab web command, and displays the main certification 
HTML page, model_certification.html (Figure 4).  

From this certification HTML file, the upper left frame, 
labeled “Certification Options”, mimics the options from the 
“Certify Code” menu. For flexibility, the user can choose to 
create the rest of the stages for this safety policy, or the user 
can choose another safety policy and generate those stages. 
The browser window is separated into different frames. 

Proving VCs and Verifying Proofs—The last phase of 
certificate creation is the proof of user selected VCs using 
an Automated Theorem Prover (ATP).  To provide 
additional assurance, AutoCert also allows the user to verify 
the proofs as well.  This is an additional cross-check of the 
proofs generated by the theorem prover by an independent 
prover. This can be worthwhile if there is any concern over 
a local installation of a prover. Indeed, proofs can be 
checked by entirely separate third-party tools. Figure 4 
shows the result of checking initialization safety for the 
same code as in Figure 3. The lower right hand frame 
(labeled VC Navigation) lists the VCs for the safety policy 
chosen by the user.  The user can select any number of VCs 
from the list, and use the upper right hand frame (labeled 
Verification Conditions) to prove VCs or verify proofs of 
previously proven VCs.  As VCs are proved or their proofs 
verified, the VC Navigation frame will update with extra 
information, such as the “Proof Status” and “Proof Time”, 
and whether the proof has been verified. 

Tracing between Code and VCs—The user can browse the 
generated code, and by selecting a line, see the list of VCs 
(VC Navigation frame) that are dependent on that line. The 
user can also select a VC and navigate to its source in the 
code. This action highlights the lines in the RTW-generated 
code (in the center pane of the browser) which “contribute” 
to the chosen VC (that is, they had either an annotation from 

Figure 4 – Traceable Certification Results 



9 

which the VCG generated the given VC or contributed a 
safety obligation).  Figure 4 shows how the tracing 
information can be used to support the certification process. 
A click on the source link associated with each VC prompts 
the certification assistant to highlight in yellow all affected 
lines of code, and display the annotations for the selected 
VC in the RTW-generated code (center frame).  Conversely, 
a click on the line number link at each line of code or on an 
annotation link will display all VCs associated with that line 
or annotation in the VC Navigation frame. In the VC 
Navigation frame, a further click on the verification 
condition link itself displays the formula which can then be 
interpreted in the context of the relevant program fragments. 
This helps domain experts assess whether the safety policy 
is actually violated, which parts of the program are affected, 
and eventually how any violation can be resolved. This 
traceability is also mandated by relevant standards such as 
DO-178B [9], and supports safety checks, which are often 
carried out during code reviews where reviewers look in 
detail at each line of the code and check the individual 
safety properties statement by statement. Since linking 
works in both directions, in combination with RTW’s 
bidirectional model-to-code tracing capability, the code-to-
VC tracing provides users with the ability to navigate 
between VCs and model elements. 

Browsing and Navigation—When the certification HTML 
files are created, the user can choose which verification 
artifacts (i.e., certification stages) to view.  The stage files 
are listed in the Stage Navigation frame (lower left hand 
frame in Figure 4).  When the user clicks a link in that 
frame, the browser window displays the appropriate HTML 
files.  This allows the user to create and view annotations, 
VCs, or certificates for different safety policies for the same 
autogenerated RTW code without leaving the Matlab 
Browser window.  

Implementation 

We now consider the case of tracing code to VCs in some 
detail, as it is the one that requires the most additional 

functionality.  There are two aspects to consider for 
implementing the interface: first, the representation format 
and language for implementing the tracing and controls 
(implemented as a backend to the inference engine); second, 
the mechanism by which tracing information can be 
incorporated into RTW-generated code. 

AutoCert Backend—There are two alternatives for 
representing the tracing information and we discuss these 
now. One option is to use PHP (an earlier prototype [5] used 
this). However, this would offer little possibility of 
integration into the Model Explorer component of RTW. 
This is because, unlike JavaScript, PHP must be executed 
on a web server. This in turn would require the user to 
switch between two different locations: the browser for the 
VC traceability and the Model Explorer for the rest of the 
functionality provided by RTW. It would also require access 
to a PHP enabled web server.  Instead, we chose a 
JavaScript-based approach. 

A JavaScript based implementation allows us to integrate 
our functionality into Matlab in the most seamless manner. 
This is because JavaScript files are just HTML files with 
additional functions (defined in JavaScript) that are 
interpreted by the Matlab Browser. That is, they do not 
require an external web server. Since the Matlab Browser 
resides in the Matlab environment, it is possible to invoke 
Matlab command line calls from within the HTML files, 
giving access to AutoCert functionality. 

The backend needs to support the following commands:  

• Make a system command line call from within an 
HTML file (JavaScript and Matlab command). This 
allows the AutoCert interface to: 

o Call the AutoCert inference engine 
o Call ATP systems to provide certificates 
o Call ATP systems to check certificates 

• Highlight/unhighlight HTML code 

• Show/hide annotations 

Each of these commands can be implemented either directly 
in JavaScript or via system calls from Matlab. 

 
Integration with RTW—There are a number of options for 
providing links from the code to the VCs. The simplest 
would be to generate parallel files that are similar in 
structure to the HTML but contain links to the VCs instead 
of links back to the model. However, this is not desirable 
from a usability standpoint as it would require the user to 
co-ordinate between two corresponding and very similar 
files. A second approach would be to modify the HTML 
documentation templates used by RTW (similar to the way 
in which the code generation templates can be customized) 

 
 

 
 

Figure 5 – Structure of Results Page 
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in order to insert our own links (e.g., to the VCs) in addition 
to the ones to the model generated by RTW. However, even 
supposing this was possible, it would be contrary to the 
spirit of a plug-in that does not have access to generator 
internals and would therefore violate the principle of 
independent certification. Instead, we chose a third 
approach, which is to post-process the generated HTML 
files to insert additional links and interweave additional 
information, such as annotations. The new links at each line 
of code and each newly added annotation give traceability 
from code to VCs and vice-versa. 
 
For the weaver program, we implemented a parser specific 
to RTW HTML output. Because the RTW HTML file is 
well-formed, we are able to break the file into three parts: 
the header, the body, and the footer (Figure 5). The header 
ends and the body begins at the HTML tag of <PRE>, and 
consequently the body ends and the footer begins at the 
HTML tag of </PRE>. A well-formed document conforms to 
all XML syntax rules. The main rule to understand is that 
every element with an opening tag is followed by a closing 
tag.  Within the body, each source line in the HTML page 
represents an actual line of RTW code from the 
corresponding .c file. Once parsed, each of these source 
lines are wrapped with an HTML SPAN tag and given a 
unique HTML ID (the ID being the source line number). 

The tool extracts a list of inferred annotations from the auto-
generated code, and inserts them into the correct locations in 
the RTW-generated HTML extended with annotations and 
line numbers. The annotations are also wrapped with a 
SPAN tag and given a unique HTML ID (the ID being the 
unique annotation name). We use JavaScript to 
highlight/unhighlight code and show/hide annotations 
corresponding to the selected VC. Further integration could 
be achieved if the files generated by AutoCert could be 
viewed in the Model Explorer as well as the browser, which 
would require modifying either the Matlab generated 
contents file or the template that generates it. 

 

Summary 

We have described the integration of certification 
functionality (AutoCert) with the Matlab/RTW GUI in a 
way that preserves the user experience and is as seamless as 
possible. Existing RTW navigation is HTML based, so we 
have chosen to continue with that in order to preserve the 
user experience. A Matlab-based GUI approach was 
considered but rejected because it would not have been 
consistent with the HTML based approach used by Matlab.  

4. CONCLUSIONS 

The AutoCert system described here is a push-button 
technology for the verification of auto-generated code. The 
use of a tightly-coupled generation/analysis tool can allow 
system engineers to concentrate on the modeling and design, 

rather than worrying about low-level software details. By 
providing tracing between code and verification artifacts, 
and customizable safety reports, it supports both 
certification and debugging. We see AutoCert as a step 
towards providing an integrated “executive dashboard” for 
V&V. 

Although integrated with the code generator, AutoCert is 
functionally independent in the sense that it does not rely on 
the correctness of any generator components. 

The AutoCert technology has a number of advantages over 
other approaches. In particular, it can handle code with 
arbitrary loops, and can handle code generated from both 
continuous and discrete models expressed in Simulink as 
well as Embedded Matlab. 

The tool has two main benefits: it helps catch bugs in 
autocoders, and it helps with the certification process for the 
auto-generated code, thus mitigating the risk of using COTS 
autocoders that lack a trusted heritage. 

Our approach offers a general framework for augmenting 
code generators with a certification component, and we have 
described an adaptation to MathWorks’ Real-Time 
Workshop [8]. We have also developed a set of schemas 
adapted to a subset of the Simulink aerospace blockset [7]. 
Previous work concentrated on in-house code generators [4, 
5].  

The certification system based on annotation inference as 
described here is more flexible and extensible than 
decentralized architectures [2] where certification 
information is distributed throughout the code generator.  
Identifying patterns is an iterative process, but by allowing 
tracing between VCs and statements of the auto-generated 
code, the tool lets missing annotations and, thus, missing 
patterns, be pinpointed more easily. 

By raising the level of abstraction at which verification 
knowledge is expressed, we are able to concisely capture 
many variations of the underlying code idioms. In 
particular, we can easily deal with optimizations which 
obscure low-level code structure. Indeed, there are other 
forms of guidance which are naturally expressed in a 
similarly declarative fashion, and we view annotation 
schemas as a first step towards a fully programmable 
certification language. 

Finally, we are investigating other ways in which the 
analysis can provide insight into generated code. The safety 
report can form the basis of a safety case, that is, a top-down 
argument for why the software meets its high-level 
requirements3. Another possibility is that by computing the 
weakest precondition of (the code generated by) a 

                                                           
3 More precisely, a safety case is a structured argument that presents 
evidence for why a system remains safe in the presence of its known 
hazards. The first step, therefore, is a full hazard analysis 
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block/submodel, the tool can automatically determine its 
interface requirements. The user could also request that a 
specific submodel be certified (i.e., the code corresponding 
to that submodel).  
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